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ABSTRACT: Soil moisture (W) helps control evapotranspiration (ET), and ET variations can in turn have a distinct

impact on 2-m air temperature (T2M), given that increases in evaporative cooling encourage reduced temperatures. Soil

moisture is accordingly linked to T2M, and realistic soil moisture initialization has, in previous studies, been shown to

improve the skill of subseasonal T2M forecasts. The relationship between soil moisture and evapotranspiration, however, is

distinctly nonlinear, with ET tending to increase with soil moisture in drier conditions and to be insensitive to soil moisture

variations in wetter conditions. Here, through an extensive analysis of subseasonal forecasts producedwith a state-of-the-art

seasonal forecast system, this nonlinearity is shown to imprint itself on T2M forecast error in the conterminous United

States in two unique ways: (i) the T2M forecast bias (relative to independent observations) induced by a negative pre-

cipitation bias tends to be larger for dry initializations, and (ii) on average, the unbiased root-mean-square error (ubRMSE)

tends to be larger for dry initializations. Such findings can aid in the identification of forecasts of opportunity; taken a step

further, they suggest a pathway for improving bias correction and uncertainty estimation in subseasonal T2M forecasts by

conditioning each on initial soil moisture state.

SIGNIFICANCE STATEMENT: Not all forecasts are created equal. Even before a given forecast is produced, the

nature of its initial conditions may indicate that it will prove more accurate than corresponding forecasts started at other

times. We address here how the character of the soil moisture at the beginning of a forecast may provide such infor-

mation. We find that under certain conditions, when the initial state of the soil is wet, the bias in the forecast is reduced

and, to a lesser extent, the random error in the forecast is also reduced. Knowing ahead of time when to put more trust

into a forecast should be of substantial benefit to forecast end-users.
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1. Introduction

a. Background and problem statement

The ocean–atmosphere–land system is inherently chaotic

(Shukla 1998). Nevertheless, its current state contains in-

formation about how it may evolve, and this information, if

properly utilized, can provide for skillful Earth system

forecasts. Characterizing the evolution of the Earth system

from an initial state—characterizing the inherent predict-

ability of Earth system variables at multiple time scales in

the face of chaos—continues to be a profound scientific

challenge. Naturally, society could benefit from such a char-

acterization, e.g., through the improved quantification, and

perhaps reduction, of meteorological forecast uncertainty.

Traditional weather forecasts, extending out to about 10 days,

extractmost of their skill from the initialization of the atmosphere

(Leutbecher and Palmer 2008; Zhang et al. 2019). In contrast,

forecasts at seasonal leads (.2 months) extract their skill from

slowly changing modes in the coupled atmosphere–ocean sys-

tem (Shukla 1998). Nestled between the weather forecast and

the seasonal forecast is the subseasonal forecast, with leads of

2 weeks–2 months. Subseasonal forecasts, a relatively recent

research focus (Robertson et al. 2015; Vitart et al. 2017; Pegion

et al. 2019), rely on some unique sources of skill, including the

development and evolution of the Madden–Julian oscillation

(Kim et al. 2018) and stratospheric sudden warming events

(Scaife et al. 2016). Another important source is the persis-

tence of soil moisture anomalies (Koster and Suarez 2001;

Seneviratne et al. 2006), given that a persisted anomaly may

be able to influence meteorological conditions through land–

atmosphere coupling (Koster and Suarez 2003; Dirmeyer

and Halder 2017). For example, under certain conditions, an

anomalously wet soil may produce an anomalously high

evapotranspiration (ET) rate that helps cool the land surface

(Seneviratne et al. 2010), leading to an anomalously low

near-surface air temperature (T2M).

It is now generally accepted that useful forecast skill at

subseasonal time scales is very likely episodic, so that progress

in improving skill will rely on our ability to identify, in advance,

forecasts of opportunity—those times during which one or

more of the various physical phenomena discussed above allow

for increased predictability (Mariotti et al. 2020). With this in

mind, we focus here on the connection between initial soil

moisture conditions and T2M forecasts at subseasonal lead

times, taken here to be days 16–30 of a forecast. While the

contribution of soil moisture initialization to both T2M and

precipitation forecast skill has been examined extensively in

the literature (e.g., Koster et al. 2011; van den Hurk et al. 2012;
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Hirsch et al. 2014), here we examine a heretofore unexplored

facet of the problem: the degree to which the character (i.e.,

wet versus dry) of the initial soil moisture conditions imprints

itself on this skill. We aim to determine if forecast skill is in-

deed higher for initial states of a certain character; such initial

states could then arguably serve as markers for forecasts of

opportunity.

We propose herein two distinct mechanisms by which soil

moisture might affect forecast skill levels, mechanisms that

affect different components of the total forecast error. Total

forecast error can be quantified using the root-mean-square

error (RMSE) metric relative to observations. The RMSE can

be separated (Entekhabi et al. 2010a) into our two components

of interest:

RMSE2 5bias2 1 ubRMSE2 , (1)

where bias is the average difference between the (uncali-

brated) forecast and the observations and ubRMSE is the

unbiased root-mean-square error, a measure of the forecast

system’s random error. One of the mechanisms we propose

acts directly and solely on the bias; indeed, through this

mechanism, the model’s forecast bias can be interpreted as

conditional on the initial soil moisture state (see section 2e).

The other mechanism acts solely on the ubRMSE.

The overall goal of this study can be stated as follows.

Having described the two mechanisms, we will search for sig-

natures of both in a suite of T2M forecasts produced with a

state-of-the-art subseasonal-to-seasonal (S2S) forecast system.

The signatures, if found, will support the idea that relatively

dry and relatively wet soil moisture initial states lead to distinct

T2M forecast error behavior—that is, that the initial soil moisture

state provides information about the accuracy of a given forecast.

b. Hypothesized mechanisms

Our two proposed mechanisms involve the canonical rela-

tionship between soil moisture and ET efficiency, shown in

Fig. 1. ET efficiency is the fraction of the land surface’s net

radiative energy used to evaporate moisture from the surface;

that is, evapotranspiration efficiency « is lET/Rnet, where l is

the latent heat of vaporization and/or fusion and Rnet is the net

radiation. The salient feature of the canonical relationship is

the presence of two distinct regimes: a soil moisture–controlled

regime (the ‘‘dry regime’’), wherein ET efficiency increases

with soil moisture, and an energy-controlled regime (the ‘‘wet

regime’’), wherein soil moisture is no longer the bottleneck to

ET, so that ET efficiency is largely insensitive to soil moisture

variations. The nature of the relationship has been studied

extensively in the literature (e.g., Eagleson 1978; Salvucci

2001). While it is not (usually) explicitly coded into land

surface models, it is nevertheless implicitly captured by a

model’s numerous interacting parameterizations (Dirmeyer

et al. 2006; Koster et al. 2019).

Figure 2 illustrates our first proposed mechanism, which

focuses on T2M forecast bias. The top panel shows what might

happen when the soil moisture is initialized wet (case 1). An

unbiased (in terms of precipitation) forecast system might

produce, within a single forecast, an ensemble of forecasted

soil moistures with an average of Wub, associated with an

average forecasted evapotranspiration efficiency of «ub. The

actual forecast system, however, might have a negative precipi-

tation bias that manifests itself at subseasonal leads, and the re-

sulting forecasts of W and ET efficiency (Wb and «b in the

panel) would accordingly be lower. The key point to notice is

that the nonlinearity in the relationship induces only a small

difference between «ub and «b, despite a large difference be-

tweenWub andWb. That is, for a wet soil moisture initial state,

the negative precipitation bias does not lead to a large bias in

forecasted ET efficiency.

Consider now the contrasting impact of a dry soil moisture

initial state (case 2, lower panel)—when initialized dry, the

forecast system, faced with the same precipitation bias at

subseasonal leads, would produce a large bias in the ET effi-

ciency. The stark distinction in ET efficiency errors between

cases 1 and 2 is, of course, a direct result of the nonlinearity of

the relationship in Fig. 1. To the extent that the net radiation

itself shows relatively low variability when averaged over days

16–30 of a forecast (usually a reasonable assumption, but see

further discussion in section 2c), we see that wet and dry soil

moisture initial states should have a distinctly different impact

on the ET bias itself.

What should we accordingly expect regarding bias in fore-

casted air temperature? Again, the connections between ET

and T2M are well established (Seneviratne et al. 2010); in the

soil moisture–controlled ET regime (Fig. 1), lower soil mois-

tures lead to lower ET rates that in turn induce higher T2M

values through a decrease in evaporative cooling. Because the

negative precipitation bias induces a significant negative ET

bias for case 2, we should expect for case 2 a concomitant

positive increase in the T2Mbias. For case 1, on the other hand,

the precipitation bias should have little effect on the T2M bias,

at least through the ET pathway.

Figure 3 illustrates the second proposed mechanism, the one

that affects ubRMSE. We cannot, of course, know at the start

of a forecast what the true soil moisture will be at the sub-

seasonal lead; due to the chaotic nature of the coupled Earth

system, the true soil moisture may take on a range of values,

represented in the top panel of Fig. 3 by the red rectangle on

the x axis. (Note that in an unbiased forecast system, this

FIG. 1. Canonical relationship between soil moisture W and the

evapotranspiration efficiency lET/Rnet. Soil moisture variations

have a much stronger impact on ET variations in the dry regime.
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uncertainty range is characterized by the intraensemble spread

in the ensemble forecast.) The top panel (case 1) represents the

case for which the expected value of soil moisture is in the wet

regime; as seen in the plot, for this case, the large uncertainty

range for soil moisture gets translated to only a narrow un-

certainty range for the ET efficiency. In contrast, the bottom

panel shows the case of a dry expected soil moisture value (case

2); here, the corresponding uncertainty range for the ET effi-

ciency is large. As we saw above for ET bias, the difference in

the uncertainty ranges for ET efficiency (and thus for ET)

between cases 1 and 2 stems entirely from the nonlinear shape

of the canonical ET efficiency–soil moisture relationship.

Because the examples in Fig. 3 focus on an idealized, unbi-

ased system, the distinction between cases 1 and 2 in the

uncertainty ranges (ensemble spreads) for ET translates to a

distinction in the ubRMSE of forecast ET. This is because

again, the ensemble spread represents the range of possible ET

values that the single realization of nature might take on. A

larger spread suggests a greater likelihood that nature’s reali-

zation of ET will lie farther away from the forecast ensemble

mean. A larger spread accordingly suggests a larger ubRMSE

for the forecasted ET.

Considering now the ability of ET anomalies to translate

themselves into T2M anomalies, Fig. 3 suggests that a dry soil

moisture (and thus a dry soil moisture initial state in conjunc-

tion with soil moisture memory) could potentially lead to

greater ensemble spread in the T2M forecast and thus, via

the reasoning outlined above, to a larger forecast T2M

ubRMSE. [Consistent with this idea, Koster et al. (2020)

document a larger intraensemble spread for forecast T2M

FIG. 3. (top) Illustration of the impact of soil moisture uncer-

tainty (specifically, the range of values that the true soil moisture

may take on at the subseasonal lead, as represented, in a perfect

forecast model, by the range of forecasted soil moistures across

the ensemble members) on the uncertainty of ET efficiency when

the soil moisture begins in the wet regime. (bottom) As in the top

panel, but for when the soil moisture begins in the dry regime. The

larger uncertainty of ET efficiency in the bottom panel is indicative

of a higher ubRMSE for ET efficiency and thus, by extension, a

higher ubRMSE for T2M.

FIG. 2. (top) Illustration of the impact of a precipitation deficit on

ET efficiencywhen the soil moisture for a specific forecast begins in

the wet regime. The terms Wub and «ub represent ensemble mean

soil moistures and ET efficiencies, respectively, for that specific

forecast under unbiased precipitation; Wb and «b are the corre-

sponding values under biased precipitation. (bottom) As in the top

panel, but for when the soil moisture begins in the dry regime.
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under dry conditions.] Again, we must emphasize that Fig. 3 is

highly idealized; the actual T2M ubRMSE will also be affected

by other chaotic elements of the system and by various model

deficiencies. Still, these additional factors would presumably

act similarly for dry and wet soils. Even in the presence of

these other factors, the mechanism outlined in Fig. 3 should

induce a distinction in T2M ubRMSE based on initial soil

moisture content.

Together, Figs. 2 and 3 capture the behavior we will seek in

the subseasonal forecasts produced with the state-of-the-art

forecast system: for relatively dry soil moisture initial states,

we expect to see a higher ubRMSE for T2M forecasts and,

for cases with a precipitation bias, a higher bias for T2M

forecasts. Given the additive contributions of (squared) bias

and ubRMSE to the total RMSE, we thus also expect to see

higher total error in forecast T2M under drier soil moisture

initial states.

c. Structure of paper

This paper is organized as follows. Section 2 below describes

the forecast system used in our analysis, the observational data

used for skill assessments, and the approach used to distinguish

soil moisture initial conditions at a given location as ‘‘dry’’ or

‘‘wet.’’ It also shows where on the globe the mechanisms above

can be reasonably evaluated. Section 3 presents the results,

focusing on the impacts of dry versus wet initial states on T2M

forecast bias and forecast ubRMSE separately. Additional

discussion is provided in section 4, and conclusions are pro-

vided in section 5.

2. Data and methods

a. GMAO systems and products

The Global Modeling and Assimilation Office (GMAO) at

the National Aeronautics and Space Administration’s Goddard

Space Flight Center (NASA/GSFC) hosts two products of

relevance to this work: (i) a state-of-the-art reanalysis

known as the Modern-Era Retrospective Analysis for Research

and Applications, version 2 (MERRA-2; Gelaro et al. 2017),

and (ii) a series of subseasonal forecasts performed with the

GMAO’s seasonal forecast system (Molod et al. 2020).

MERRA-2 assimilates a wide variety of conventional and

satellite-based measurements (McCarty et al. 2016), includ-

ing aerosol information (Randles et al. 2016), into a global

atmosphere/land surface modeling environment [the Global

Earth Observing System, or GEOS, model (Molod et al. 2015)]

to produce a comprehensive and consistent picture of atmo-

spheric and land surface fields over the period from 1980 to

present. The present analysis employs the following daily-

averaged MERRA-2 products on a 0.58 latitude 3 0.6258 lon-
gitude grid: evapotranspiration [ET, from GMAO (2015a)],

average profile soil moisture [W, fromGMAO(2015a)], gauge-

corrected precipitation [P, from GMAO (2015b)], and net ra-

diation [Rnet, fromGMAO (2015c)]. The ET,W, andRnet fields

are used to characterize dry versus wet soil moisture regimes

at each grid cell (section 2b). While in some ways ET is more

directly controlled by root zone moisture, the profile moisture

W is a valid surrogate when constructing ET–soil moisture

relationships for the purpose of identifying dry versus wet re-

gimes; this is because root zone moisture and profile moisture

covary strongly in this model (Koster et al. 2020) and because

W provides a better indication of the total land moisture

present at the start of a forecast. MERRA-2 P data, used to

quantify precipitation bias, are considered a suitable rep-

resentation of truth, given that MERRA-2 explicitly in-

cludes corrections to P from rain gauge networks (Reichle

et al. 2017) and that we focus here only on areas for which

rain gauge density is adequate (section 2c). Note that these

P corrections are implicitly built into MERRA-2’s ET

and W fields.

GMAO’s S2S version 2 prediction system (Molod et al.

2020) initializes a fully coupled ocean–atmosphere–land–sea

ice model using a weakly coupled Atmosphere–Ocean Data

Assimilation System. During the analysis that provides the

initial states for the forecasts, the precipitation (as inMERRA-

2) is scaled to agree with a rain gauge product (Reichle et al.

2017), adding realism to the initial soil moisture anomalies

used in the forecasts. The land model component of the fore-

cast system [the Catchment model of Koster et al. (2000a)] is

the same as that used for MERRA-2, so the characterization

at each grid cell of wet versus dry soil moisture regimes

derived from MERRA-2 data (section 2b) also applies to the

S2S system. The Catchment model features an explicit treat-

ment of subgrid soil moisture variability; the land surface is

characterized by up to three hydrological regimes whose areas

vary in time according to the overall moisture state and the

existing topography: a saturated regime (from which evapo-

transpiration, ET, occurs without soil moisture stress), a sub-

saturated regime (from which ET is limited by soil moisture

stress), and a wilting regime (from which transpiration is pre-

vented). Photosynthesis physics are not directly incorporated

into this version of the model, being instead captured by

empirical formulations. A full, implicit surface energy bal-

ance calculation ties ET to the land surface temperature

(and accordingly to the overlying air temperature). Higher

ET rates imply that more of the available radiative energy is

used for the phase change of water, leaving less available to

heat the surface; as a result, higher ET rates induce cooler

temperatures.

Again, we focus in this study on the series of boreal warm

season forecasts (actually, hindcasts) produced by the GEOS

S2S system. For each warm season month (June–August), we

analyze a total of 102 independent forecasts: six forecasts in a

given year (with start dates spaced 5 days apart during the

month in question) for each of the 17 years in the period 1999–

2015. The 17-yr period considered corresponds to the analysis

period covered by the SubX multimodel forecasting experi-

ment (Pegion et al. 2019). While each of the 102 forecasts

considered for a given month consists of 4 ensemble members,

the method used to perturb the initial conditions for the en-

semble members does not include a perturbation of W, so we

distinguish 102 initial W states per month. We focus here on

averages over forecast days 16–30, i.e., forecasts at our chosen

subseasonal lead. All model simulations were performed on a

cubed sphere grid, approximating a 0.58 3 0.58 resolution;
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model output data were regridded onto the 0.6258 3 0.58 grid
used for MERRA-2 diagnostic products.

b. Categorization of dry and wet forecast initial states

While the nonlinear relationship in Fig. 1 is not explicitly

coded into the Catchment land surface model of the GEOS

forecast system, evidence that it is nevertheless in operation

can be derived through analysis of the model’s ET, Rnet, and

soil moisture output diagnostics (Koster et al. 2019, 2020). For

the present analysis, it is critical to estimate from the model

diagnostics the particular soil moisture Wboundary that, for a

given grid cell and time of year, divides the full soil moisture

range into Fig. 1’s dry regime and wet regime. Only by iden-

tifying this boundary can a given forecast’s initial soil moisture

be categorized as ‘‘dry’’ or ‘‘wet.’’

We derive Wboundary through analysis of MERRA-2 ET,

Rnet, andW values; as noted above, this is reasonable given that

MERRA-2 uses the same land surface model as does the

GEOS S2S system. To help ensure independence from the

forecast suite, Wboundary is derived here from MERRA-2 data

lying outside the forecast period (i.e., MERRA-2 data from

1980 to 1998). Highlights of the approach we used as ap-

plied at a representative grid cell (in the central United States)

and representative month (June) are illustrated in Fig. 4. We

first plot daily values of W against corresponding values of

lET/Rnet from all June days in 1980–98. The wettest 10% of

soil moistures in the plot are then identified, and the mean soil

moisture and ET efficiency for that subset are used to position

the point A in the figure. Similarly, averages over the driest

10% of soil moistures are used to position the point B. To

determine Wboundary, 20 evenly spaced locations between the

points A and C are tested one by one; we identify the location

(point D in the figure) such that, when the piecewise linear

function (in dark blue) is fitted through A, D, and B, the function

provides the closest approximation to the scatter of points in the

plot. In essence, we determine the point D on the line AC such

that theRMSEbetween the piecewise function and the individual

lET/Rnet values isminimized.Note that if the slope of the lineDB

is too shallow (i.e., less than 1),we assume that the two regimes are

not properly distinguished and do not consider the grid cell in our

analysis for the month in question.

This, of course, is but one potential approach for identifying

the proper value of Wboundary; other approaches are also

available (e.g., Akbar et al. 2018). We tested the sensitivity of

our study’s results to the precise value of Wboundary by modi-

fying it by 0.02 in either direction and then repeating our an-

alyses. We find that while the modification of Wboundary results

in small quantitative differences in the fields we generate (not

shown), the conclusions we extract from the fields remain un-

changed, providing confidence that the approach is acceptable

for this study. We note also that although Wboundary varies

substantially across the globe, we find (not shown) no clear

predilection for the mechanisms in Figs. 2 and 3 to operate

most effectively within a specific range of Wboundary values.

c. Focused study area

It is important at the outset to identify the locations at which

we can reliably distinguish the impacts of wet and dry soil

moisture initial states on forecast skill. Indeed, for an evalua-

tion of the proposed mechanisms to be viable at a given loca-

tion, four features must be in place. First, the net radiation

must be large enough to translate theW differences into sizable

ET differences for a dry initial condition. Second, across the

forecast suite, there must be a number of initialW values in the

dry regime as well as a number in the wet regime to allow a

robust averaging of results for each regime. Third, in the dry

regime, ET must tend to increase as expected with soil mois-

ture. Fourth, the rain gauge density at the location must be

adequate. This last condition relates to the fact that the

GMAO S2S forecast system does not use satellite-based pre-

cipitation estimates or soil moisture retrievals in the simula-

tions providing the initial W values applied in the forecasts; in

this system, the accuracy of the initial soil moistures relies in-

stead on precipitation as measured by gauges. An adequate

rain gauge density is needed for our analysis because there is no

point evaluating how soil moisture affects T2M forecast skill if

the accuracy of the initial soil moisture is itself in question.

We address the net radiation requirement by focusing on the

boreal warm season of June through August. [Evidence for

the operation of the mechanisms in May and September,

the shoulder months, is present but weaker, as expected (not

shown).] Locations satisfying the other three requirements are

illustrated in Fig. 5. First, Fig. 5a shows the locations (in red)

where at least 5 of the 102 June forecast start dates (6 June start

dates per year for all 17 SubX forecast years) have initial W

values in the dry regime and at least 5 have initial W values in

the wet regime, as determined by comparing each of the initial

moisture states to the computed Wboundary values. Requiring

more than 5 start dates, of course, would allow for more robust

statistics, but it would also reduce the size of the area that could

be considered; through analysis of maps generated with

different requirements, we settled on a minimum of 5 start

dates as an optimal compromise. Note that while much of

North America satisfies this criterion, a smaller fraction of

the grid cells in Eurasia do; for this modeling system, many

desert and high latitude locations in Eurasia could not be

included in our analysis.

FIG. 4. Illustration of the calculation of Wboundary, the soil

moisture (degree of saturation) delimiting the dry and wet regimes

(see text).
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Figure 5b addresses the question of whether ET does tend to

increase with soil moisture in the dry regime at a given location.

(A reasonable connection between the two variables is re-

quired, of course, for the mechanisms in Figs. 2 and 3 to

operate.) Specifically, Fig. 5b shows – for those July days

during 1980 through 1998 in which the soil moisture at a

given location is below the Wboundary value determined for

July (section 2b)—the correlation between daily soil moisture

and daily ET. This test is necessary because a high correla-

tion is far from guaranteed; again, the canonical relation-

ship in Fig. 1 is not explicitly coded into the land model.

Furthermore, the relationship in Fig. 1 is not between soil

moisture andETbut rather between soilmoisture and lET/Rnet,

so that if the net radiation itself varies excessively from day

to day, ET might not increase with increasing soil moisture

as needed. Despite these potential issues, the correlations

in Fig. 5b are, as expected, positive almost everywhere and

above 0.7 in most locations. The values, however, are low in

high latitude regions and in the tropics, as well as in (for

example) central Europe. The low values that appear in

many of these areas presumably stem from a limited num-

ber of dry cases over which to compute the correlation, as

suggested in Fig. 5a.

Finally, Fig. 5c shows the density of the rain gauges underlying

the initialization of the GEOS subseasonal forecasts—the rain

gauges that feed into the 0.58 3 0.58 daily Climate Prediction

Center Unified (CPCU) precipitation product (Xie et al. 2007;

Chen et al. 2008). While the density is high in the conterminous

United States (CONUS) and across Europe, and while it is

reasonable in some other regions (e.g., India, eastern China),

the density is low across much of the globe, a long-recognized

problem (Kidd et al. 2017). Note, however, that the actual use

of these gauge data in GEOS systems is a little complex, as

described in detail by Reichle et al. (2017). In short, for the

initialization process (and indeed for the production of the

MERRA-2 precipitation rates used for our calculation of

precipitation biases), the gauge data are not used north of

62.58N; here, GEOS analysis data (Lucchesi 2018) are used

instead. Between 42.58 and 62.58N, a tapered blend of the

analysis and gauge data is used. Also, in Africa, CPC Merged

Analysis of Precipitation–corrected data (Xie and Arkin 1997)

rather than CPCU-corrected data are used.

For clarity of presentation, the fields generated in our

analysis will focus on the boxed area over CONUS in Fig. 5c, an

area consisting of grid cells that, for the most part, satisfy all of

the above criteria. Because parts of Europe (particularly the

Balkan Peninsula) are also potentially relevant, the boxed area

over Europe will be examined briefly in section 4. In our plots,

we will mask out grid cells colored yellow or green in Fig. 5a.

d. Verification data

We compare forecasted T2M at subseasonal leads to

the independent, fully observations-based CPC tempera-

ture dataset (https://www.esrl.noaa.gov/psd/data/gridded/

data.cpc.globaltemp.html). The CPC data are provided at

0.58 3 0.58 resolution and are generated from station observations.

We approximate a given day’s observed average temperature

using 0.5 (Tmin 1 Tmax), given that only the daily minimum

temperature (Tmin) and maximum temperature (Tmax) are

provided in the CPC dataset.

FIG. 5. (a) Fraction of the 102 July forecasts for which the initialized soil moisture lies in the wet regime (see Fig. 1). (b) Correlation

between daily profile soil moisture and daily ET for the subset of dates with soil moisture belowWboundary, fromMERRA-2 data holdings

for July during 1980–98. (c) Rain gauge density underlying the precipitation data used to initialize the subseasonal forecasts (number of

gauges per 18 3 18 cell, regridded here to 0.6258 3 0.58).
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e. Calculation of error metrics

The determination of Wboundary allows us to divide the N

forecasts of a forecast suite into two groups: those that are

initialized in the wet regime (Nwet) and those that are initial-

ized in the dry regime (Ndry). (As noted above, N 5 102 for a

given month.) We can accordingly derive a subseasonal fore-

cast bias for each subset separately:

bias
wet

5 1/N
wet �

i51,Nwet

(T2M
forecast,i

2T2M
observed,i

), (2)

bias
dry

5 1/N
dry �

i51,Ndry

(T2M
forecast,i

2T2M
observed,i

), (3)

where T2Mforecast,i is the four-member ensemble mean fore-

cast of T2M averaged over days 16–30 for forecast i, and

T2Mobserved,i is the corresponding observed temperature during

that forecast period.With the biases for these subsets computed,

we can quantify the impact of soil moisture initialization regime

on bias using the difference biasdry 2 biaswet.

The overall precipitation and T2M bias maps to be shown

later are based on equations similar to (2) and (3), but using all

forecasts—not just those with wet or dry initial conditions.

With a forecast period spanning 17 years, with 6 forecast start

dates per month, and with 4 ensemble members per forecast,

a total of 408 simulations with the forecast system at the sub-

seasonal lead of interest are analyzed to produce the overall

precipitation and T2M bias maps. As discussed above, the ob-

served precipitation rates used for the bias calculation are the

rain gauge-corrected rates included in the MERRA-2 product.

The RMSE values for the dry and wet initial states are

computed with

RMSE
wet

5

"
1/N

wet �
i51,Nwet

(T2M
forecast,i

2T2M
observed,i

)
2

#0:5

,

(4)

RMSE
dry

5

"
1/N

dry �
i51,Ndry

(T2M
forecast,i

2T2M
observed,i

)2
#0:5

:

(5)

Application of (1) then provides our equations for ubRMSE:

ubRMSE
wet

5 (RMSE2
wet 2bias2wet)

0:5
, (6)

ubRMSE
dry

5 (RMSE2
dry 2 bias2dry)

0:5
. (7)

As with the bias metric, the differences ubRMSEdry2 ubRMSEwet

and RMSEdry 2 RMSEwet in the figures below quantify the

impact of a dry initial state on the ubRMSE and RMSE,

respectively.

We use a bootstrapping procedure to evaluate the signifi-

cance of the computed differences. For a given grid cell and

month, we randomly sample (without replacement) two sets of

forecast and observed 15-day T2M (or precipitation) pairings

from the 102 available pairings: one set numbering Ndry

pairings, and the other numbering 1022Ndry, orNwet, pairings.

(Given the random sampling, the elements in neither set are

tied to the initial soil moisture state.) We then compute the

bias, ubRMSE, or RMSE differences for that random sampling

using the equations above. The process is repeated 500 times to

provide a distribution for the differences, a distribution that

can be used to evaluate the statistical significance of the actual

differences, i.e., those that are in fact keyed to the initial soil

moisture state.

The approach used to make the random selections, by the

way, also allows the determination of significance levels for the

large-scale means of the differences. A given time period is

associated with a spatial distribution of initial soil moisture as

well as a spatial distribution of 15-day T2M pairings (forecast

versus observed). The random selection process involves, in

essence, a shuffling of the dates associated with the 15-day

pairings while retaining the spatial information in the initial

soil moisture fields and thus the information on which grid cells

during a specific period are considered dry and which are

considered wet. The upshot is that we account explicitly for the

impact of relevant spatial correlations (in both the initial soil

moisture fields and the 15-day meteorological fields) on the

large-scale averages of the metrics.

3. Results over CONUS

We now evaluate the mechanisms illustrated in Figs. 2 and 3

using the suite of subseasonal forecasts produced by the

state-of-the-art NASA GMAO GEOS S2S-2 forecast system

(section 2a).

a. Forecast bias

Section 2c above identified CONUS as a region over which

we might find evidence of the mechanisms outlined in Figs. 2

and 3. For the mechanism affecting the bias component of

error (Fig. 2), CONUS is particularly worthy of study, as it

features a particularly large negative precipitation bias during

summer. A negative summertime precipitation bias in CONUS

is, in fact, endemic to most modeling systems (Lin et al. 2017).

The first and second columns in Fig. 6 show, for the CONUS

region, composite maps of subseasonal T2M forecast bias for

forecasts initialized in the dry regime and the wet regime, re-

spectively, at a given cell (using the method described in

section 2b). Biases are computed relative to independent CPC

air temperature observations (as described in sections 2d and

2e). Notice that for the majority of CONUS, the biases are

clearly smaller for the wet initial states. That is, over CONUS,

wet initial states provide T2M forecasts that are closer, in terms

of mean bias, to the observations.

The third column in Fig. 6 shows the differences between the

fields in the first and second columns, and the fourth column

shows the overall precipitation bias produced by the forecast

system at the 16–30 day subseasonal lead (section 2e). The

mechanism outlined in Fig. 2 suggests that the T2M bias dif-

ference (third column) should be positive where the forecasted

precipitation is, on average, biased negative (fourth column).

The patterns do not match exactly (the pattern correlations

range from only 0.33 in June to 0.49 in July for points north of

308N [based on;2000 points], and they range from 0.42 to 0.63

when considering points north of 308N and east of 1008W
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[based on ;1200 points]), but this is to be expected given

sampling constraints and the fact that local ET is not the only

determinant of T2M across the continent. T2M is indeed affected

by a variety of dynamical and thermodynamic factors, including

potential impacts of remote ET anomalies (Koster et al. 2016).

The salient result from the figure is rather the first-order agree-

ment in pattern between the third and fourth columns—according

to the investigated mechanism, the large negative precipitation

deficit in the center of CONUS should lead to a large T2M bias

difference there, and this is precisely what is seen. TheT2Mbiases

produced by the two forecast subsets, one initialized dry and the

other initialized wet, differ by as much as 2–3K, particularly in

July, and the differences over about half the area shown are sig-

nificant at the 95% level. The first-order agreement between the

bias difference and precipitation deficit patterns, including their

monthly variations, supports the idea that themechanismoutlined

in Fig. 2 is indeed in operation.

To what extent, though, might the forecasted precipitation

bias itself be affected by the soil moisture initialization, and

how might this affect the T2M bias? Past analyses have shown

that while soil moisture initialization has a considerably stron-

ger impact on T2M forecasts than on precipitation forecasts at

subseasonal leads, the impact on precipitation is nevertheless

nonzero (Koster et al. 2011). If a dry soil moisture initial state

does manage to induce a reduced amount of precipitation (and

thus amore negative precipitation bias), themechanism outlined

in Fig. 2 would be enhanced, and the corresponding upward

bump in the T2M bias would be increased. We investigated this

idea by examining the precipitation biases over CONUS for

the dry and wet soil moisture initial states separately. These

differences, plotted in Fig. 7, indicate that overall, the impact of

land surface feedback on precipitation, if present, is at most of

secondary importance, though the small positive feedback that

does appear to occur in central CONUS during July (statisti-

cally significant at the 95% level) is consistent with the higher

T2Mbias differences there for that month (relative to the other

months) in the third columnof Fig. 6. The convective precipitation

schemeused in theGMAOS2S system, by theway, is theRelaxed

Arakawa–Schubert scheme (Moorthi and Suarez 1992), a scheme

that in past modeling studies has shown a strong propensity for

land–atmosphere feedback (Koster et al. 2000b), to a degree

that some would argue is excessive (Ruiz-Barradas and Nigam

2006). Based on our experience with this scheme, it seems

unlikely that the results in Fig. 7 significantly underestimate

the importance of precipitation feedback for this problem.

Whether or not feedbacks with precipitation are relevant,

the strong summertime dry precipitation bias in central CONUS

does allow the impacts of the mechanism outlined in Fig. 2 to

be clearly visible—Fig. 6 supports the idea that the mechanism

is indeed operating. We turn now to the mechanism outlined in

Fig. 3, the one that addresses soil moisture impacts on the

unbiased RMSE, or ubRMSE.

b. Unbiased RMSE

Figure 8 shows, for June, July, and August separately, the

ubRMSE computed for dry initial states (column 1), wet initial

states (column 2), and their differences (column 1 minus

column 2). Of particular interest are the difference plots.

FIG. 6. (column 1) Average T2M forecast bias (K) generated by those forecasts with initial soil moisture in the dry regime (see Fig. 1).

These are composite maps; the particular forecasts contributing to the results shown are grid cell specific. (column 2) As in column 1, but

for those forecasts with initial soil moisture in the wet regime. (column 3) Differences: column 1minus column 2. Dots indicate differences

that are statistically significant at the 95% confidence level. (column 4) Precipitation bias (mm day21) at the subseasonal lead averaged

across all forecasts.
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The discussion accompanying Fig. 3 suggests that the T2M

ubRMSE should be larger for dry initial states than for wet

initial states, and the difference plot for each month does in-

deed show a preponderance of positive values. In the area

shown, grid cells with positive differences outnumber those

with negative differences by a ratio of about 2.5 to 1, which is

significant at the 95% level (section 2e). The spatially averaged

difference for each month is roughly 0.25K, which is signifi-

cantly different from zero at the 99% level. The results thus

lend support to the idea that the proposed ubRMSE-focused

mechanism is indeed at play here.

The results, however, cannot be called conclusive; the dif-

ferences in Fig. 8 are not as overwhelmingly positive as those

seen in Fig. 6 for the bias-focused mechanism, and the indi-

vidual locations (indicated by small dots) that are significantly

different from zero at the 95% level are fewer in number. The

differences are, in fact, generally much smaller than those seen

for the bias-focused mechanism, as indicated by the different

ranges for the color bars in Figs. 6 and 8. The smaller differences

suggest that the impact of the ubRMSE-focused mechanism, if

that mechanism is indeed operating, is more subtle than that of

the bias-focused mechanism in this forecast system. A more

extensive forecast suite, with a greater number of ensemble

members per forecast, might be needed to demonstrate more

conclusively this more subtle impact.

Central to the operation of the ubRMSE-focused mecha-

nism is the idea that forecasts initialized dry should have a

larger intraensemble spread in their subseasonal ET fluxes,

to reflect the larger uncertainty of the actual ET. The avail-

ability of forecast output from the individual ensemble members

thereby allows for an additional test of the mechanism—we can

plot the differences (dry initial states minus wet initial states) in

the average forecast ensemble spread in ET. Unfortunately,

each individual forecast in our forecast suite consists of only

four ensemble members, making the calculation of a standard

deviation (or range) for that individual forecast highly inac-

curate. Still, computing the intraensemble variance for each of

the relevant forecasts in a given month and taking the square

root of the average of the variances should provide an estimate

of the standard deviation with first-order accuracy.

Figure 9 shows the differences (dry initial states minus

wet initial states) in the average intraensemble ET standard

deviation for each month over CONUS. The east–west gradi-

ent in the differences presumably reflects the fact that ET rates

FIG. 7. (left) Precipitation forecast bias (mm day21) at the subseasonal lead for those forecasts with soil moisture initial states in the dry

regime. These are composite maps; the particular forecasts contributing to the results shown are grid cell specific. (center) As in the left

column, but for those forecasts with soil moisture initial states in the wet regime. (right) Differences: column 1 minus column 2. Dots

indicate differences that are statistically significant at the 95% confidence level.
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(and thus their variations) are higher in the east; while smaller,

the differences in the west can still be significant, as indicated

by the distribution of dots in the figure. The key message from

Fig. 9 is that the differences across CONUS are almost entirely

positive (with almost all of these differences being significant at

the 95% level), supporting the idea that the proposed

mechanism can indeed operate. Still, the positive differences

in Fig. 9 do not translate into correspondingly consistent

positive differences in the third column of Fig. 8. As sug-

gested above, the ubRMSE-focused mechanism may have a

relatively subtle impact on T2M random error, which would

cloud the comparison—especially given that ET is only one of

the factors controlling this error. Again, while the results in

Figs. 8 and 9 generally support the idea that the ubRMSE-

focused mechanism is in operation, a more extensive forecast

suite with this forecast system or parallel analyses with other

forecast systems (particularly systems with a larger ensemble

size) may be needed to demonstrate this conclusively.

c. Total error

As indicated in Eq. (1), the forecast model bias and

ubRMSE combine to produce the RMSE, a measure of the

total forecast error. Figure 10 shows the T2M forecast RMSE

for dry initial states minus that for wet initial states. Unlike

bias, RMSE is a positive definite quantity, and thus the

RMSE differences are readily interpreted in terms of fore-

cast skill—positive (negative) differences imply that the dry

initial state subset produces larger (smaller) total forecast errors.

For the central CONUS region, dry initial states clearly lead

to higher total errors, and across CONUS, negative RMSE

differences are small and infrequent. The differences, where

they appear, are generally statistically significant at the 95%

level. As noted above, comparison of the third columns in

Figs. 6 and 8 indicate that for this forecast system, most of the

RMSE differences in CONUS stem from bias differences.

4. Discussion

The mechanisms in Figs. 2 and 3 suggest that, before a

forecast is even performed, the initial state of the soil can tell us

something about the forecast’s expected accuracy. In general,

through these mechanisms, dry initial states can be expected

to promote a greater random error and, in the presence of

precipitation bias, a greater bias error (though see further

FIG. 8. (left) Average T2M forecast ubRMSE (K) generated by those forecasts with initial soil moisture in the dry regime (see Fig. 1).

These are composite maps; the particular forecasts contributing to the results shown are grid cell specific. (center) As in the left column,

but for those forecasts with initial soil moisture in the wet regime. (right) Differences: column 1minus column 2. Dots indicate differences

that are statistically significant at the 95% confidence level.
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discussion below regarding the potential compensation of errors).

Consideration of the mechanisms can thus contribute to the

goal of identifying forecasts of opportunity—a cornerstone of

our hopes for advancing subseasonal forecast skill (Mariotti

et al. 2020). A wet soil moisture initial state may, under certain

conditions, be an indicator of such a forecast of opportunity.

As an aside, we note that such ideas are, at first glance,

consistent with the study of Huang and van den Dool (1993),

who found higher antecedent rainfall rates to be associated

with higher regression-based T2M forecast skill levels. This con-

sistency, however, appears to be coincidental—Huang and van

den Dool (1993) attributed the source of their wet-versus-dry

FIG. 9. Difference (dry initial states minus wet initial states) in

the average intraensemble spread of forecasted ET (as represented

by the standard deviation; mm day21). Dots indicate differences

that are statistically significant at the 95% confidence level. These

are composite maps; the particular forecasts contributing to the

results shown are grid cell specific.

FIG. 10. Forecasted T2M RMSE differences (K): RMSE for

those forecasts initialized in the dry regimeminus that for forecasts

initialized in the wet regime. Dots indicate differences that are

statistically significant at the 95% confidence level. These are

composite maps; the particular forecasts contributing to the results

shown are grid cell-specific.
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forecast skill differences to differences in the climatological

periods used to generate their regressions, a factor not relevant

in the present study.

Consideration of themechanisms in Figs. 2 and 3 can be used

for more than determining forecasts of opportunity. The idea

that Earth system models are biased and that forecasts pro-

duced with such models can be made more realistic through

bias correction is hardly new (e.g., Chang et al. 2019). The bias

corrections applied, however, need not be constant; in princi-

ple they can be state-dependent (e.g., DelSole and Hou 1999;

Danforth et al. 2007) or simply conditioned (as suggested by

our results) on the initial state of the forecast system. Through

consideration of the mechanism in Fig. 2, and guided by plots

such as those in Fig. 6, forecasters could apply larger bias

corrections to the T2M forecasts obtained under dry initializa-

tions, presumably leading to more accurate forecasts overall. The

error that remains, the ubRMSE, would itself have some depen-

dence on the initial land state (Fig. 8), being somewhat larger

for drier initialization; through consideration of the ubRMSE-

focused mechanism (Fig. 3), forecasters could assign higher

quantitative uncertainty levels to these particular forecasts.

Given such potential applications, it is important to em-

phasize that our evaluation of the mechanisms over the

CONUS region is not meant to imply that they are relevant

only there. A more extensive forecast suite (covering a

greater number of years) would have expanded somewhat

the areas shaded red in Fig. 5a, and if our forecast system

had not relied almost exclusively on the geographically

limited rain gauge network for accuracy in the soil moisture

initialization, our evaluations could have been more global

in scale. Simply put, the mechanisms we propose presumably

operate in many parts of the world. New datasets and ap-

proaches are expected, in the years to come, to improve con-

siderably the initialization of soil moisture state in forecast

systems, particularly in areas without good rain gauge cover-

age. Satellite-based rainfall estimates currently cover the globe

at high (e.g., 0.18 3 0.18) resolution (Huffman et al. 2020) and

thus can help make up for rain gauge deficiencies. Remotely

sensed measurements at L-band (Entekhabi et al. 2010b; Kerr

et al. 2010) provide unprecedented global information on soil

moisture conditions that can be assimilated into preforecast

analysis systems (e.g., Carrera et al. 2019). With more accurate

estimates of initial soil moisture state obtained through such

techniques, the potential for the identification of forecasts of

opportunity and the application of bias correction procedures

need not be limited to areas with dense rain gauge networks.

All this being said, the Europe region outlined in Fig. 5c

shows promise for some supplemental analyses with our current

set of forecasts. While not as suitable as CONUS—according

to a careful study of the panels in Fig. 5, only a region centered

on the Balkan Peninsula satisfies all our analysis criteria—the

rain gauge density in Europe is particularly high, and the CPC

temperature validation data there are also of high quality. As

background for some additional points of discussion, Fig. 11

shows relevant results over Europe for July. The precipitation

bias (Fig. 11b) is negative in many parts of the region, particu-

larly in the Balkan Peninsula, and these places are indeedwhere,

at least for themost part, the difference in T2M forecast bias (dry

initial states minus wet initial states) is positive (Fig. 11a). The

mechanism in Fig. 2 thus does appear to be operating in Europe.

The operation in Europe of the ubRMSE-focused mecha-

nism in Fig. 3, however, is not as clear. While the ubRMSE

differences (dry initial states minus wet initial states) for July

are generally positive as expected (Fig. 11c), the corresponding

differences in the intraensemble standard deviation of ET

forecasts (Fig. 11d) are much smaller than those in Fig. 9, being

often close to zero. Errors in the estimation of the standard

deviations from small forecast ensembles may explain the in-

consistencies between Figs. 11c and 11d. Vagaries in how the

single realization of nature manifests itself may also explain

these inconsistencies; even with a large uncertainty represented

by a large ensemble spread, nature may choose to produce a

value close to the center of that range and thus close to the

unbiased ensemble mean forecast. Thus, if the sample size

underlying the ubRMSE calculation is small (as it often is),

such vagaries could lead to a mismatch between ubRMSE and

ensemble spread. We emphasize again, though, that Europe is

not an optimal place to search for evidence of the mechanism.

The inconsistency may simply stem from the low Corr(W, ET)

values there (for thismodel) discussed in conjunction with Fig. 5b.

Two findings support this idea: (i) the differences in Fig. 11d

are generally positive as expected in the Balkan Peninsula,

where all our analysis criteria are met, and (ii) the June version

of Fig. 11d (not shown) exhibits a greater number of negative

standard deviation differences, with June also having particu-

larly low Corr(W, ET) values in Europe (also not shown).

The map of total RMSE differences in Europe (dry initial

states minus wet initial states) shown in Fig. 11e illustrates

another important discussion point. Taken at face value, both

the bias-focused and ubRMSE-focused mechanisms seem to

imply higher overall error for dry initial states. The total

RMSE for T2M along the northern edge of Europe, however,

is seen in Fig. 11e to be slightly lower for dry initial states. An

analysis of overall climate biases in Europe reveals the reason:

modeled temperatures in the northern half of Europe are al-

ready biased low in this forecast system (Fig. 11f) for reasons

apparently unrelated to soil moisture – reasons possibly asso-

ciated with the system’s radiation balance. The small but

negative precipitation bias seen in the northern half of Europe

(Fig. 11b) presumably does encourage, through the mechanism

in Fig. 2, a positive increase in the T2M bias under dry initial

states (Fig. 11a), but this appears to mitigate, at least partially,

the existing background cold T2M bias. In other words, in the

northern half of Europe, it is a compensation of errors that

allows the forecast T2M bias (and thus the total RMSE) to be

smaller in magnitude for dry initial states than for wet initial

states. The negative differences in Fig. 11e are thus not in-

consistent with our proposed mechanisms. Rather, the Europe

example highlights an important point: in some areas, it is

critical to consider the soil moisture impacts on bias in con-

junction with other sources of bias in the forecast system.

5. Summary

Our results show that the soil moisture regime (dry versus

wet) characterizing a subseasonal forecast’s initialization has a
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significant impact on T2M forecast bias. While not as conclu-

sive, our results also lend support to the idea that soil moisture

regime affects T2M random forecast error, as represented by

the ubRMSE. Soil moisture regime thus has a significant im-

pact on total T2M forecast error (Fig. 10), an impact that can

be readily understood (through Figs. 2 and 3) in the context

of the nonlinear relationship between soil moisture and ET

efficiency. If one has already quantified the overall forecast

biases (both temperature and precipitation) of a given mod-

eling system through the analysis of historical forecasts, the

mechanisms in Figs. 2 and 3 should provide some guidance

regarding the distinction between T2M forecast error under

dry and wet initial states. An initial soil moisture known at the

outset to encourage lower forecast error can effectively point

to a ‘‘forecast of opportunity’’—a forecast that can be consid-

ered more accurate. Presumably, forecasters could use the

mechanisms to derive bias corrections and uncertainty esti-

mates conditioned on initial soil moisture state.

Naturally, progress in characterizing forecast error is critical

for providing users with useful, ancillary information on forecast

fidelity along with the forecasts themselves. It also provides

some of the basic scientific underpinnings necessary to un-

derstand subseasonal predictability in the Earth system. The

present study addresses an important and (to our knowledge)

heretofore unexplored piece of this error characterization.
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